Abstract

Deep generative networks in recent years have reinforced the need for caution while consuming various modalities of digital information. One avenue of deepfake creation is aligned with injection and removal of tumors from medical scans. Failure to detect medical deepfakes can lead to large setbacks on hospital resources or even loss of life. This paper attempts to address the detection of such attacks with a structured case study. Specifically, we evaluate eight different machine learning algorithms, which include three conventional machine learning methods (Support Vector Machine, Random Forest, Decision Tree) and five deep learning models (DenseNet121, DenseNet201, ResNet50, ResNet101, VGG19) in distinguishing between tampered and untampered images. For deep learning models, the five models are used for feature extraction, then each pre-trained model is fine-tuned. The findings of this work show near perfect accuracy in detecting instances of tumor injections and removals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.