Abstract

Tracking cells as they divide and progress through differentiation is a fundamental step in understanding many biological processes, such as the development of organisms and progression of diseases. In this study, we investigate a machine learning approach to reconstruct lineage trees in experimental systems based on mutating synthetic genomic barcodes. We refine previously proposed methodology by embedding information of higher level relationships between cells and single-cell barcode values into a feature space. We test performance of the algorithm on shallow trees (up to 100 cells) and deep trees (up to 10 000 cells). Our proposed algorithm can improve tree reconstruction accuracy in comparison to reconstructions based on a maximum parsimony method, but this comes at a higher computational time requirement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.