Abstract

Falls have become one of the reasons for death. It is common among the elderly. According to World Health Organization (WHO), 3 out of 10 living alone elderly people of age 65 and more tend to fall. This rate may get higher in the upcoming years. In recent years, the safety of elderly residents alone has received increased attention in a number of countries. The fall detection system based on the wearable sensors has made its debut in response to the early indicator of detecting the fall and the usage of the IoT technology, but it has some drawbacks, including high infiltration, low accuracy, poor reliability. This work describes a fall detection that does not reliant on wearable sensors and is related on machine learning and image analysing in Python. The camera's high-frequency pictures are sent to the network, which uses the Convolutional Neural Network technique to identify the main points of the human. The Support Vector Machine technique uses the data output from the feature extraction to classify the fall. Relatives will be notified via mobile message. Rather than modelling individual activities, we use both motion and context information to recognize activities in a scene. This is based on the notion that actions that are spatially and temporally connected rarely occur alone and might serve as background for one another. We propose a hierarchical representation of action segments and activities using a two-layer random field model. The model allows for the simultaneous integration of motion and a variety of context features at multiple levels, as well as the automatic learning of statistics that represent the patterns of the features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.