Abstract

BackgroundEffective resource management in hospitals can improve the quality of medical services by reducing labor-intensive burdens on staff, decreasing inpatient waiting time, and securing the optimal treatment time. The use of hospital processes requires effective bed management; a stay in the hospital that is longer than the optimal treatment time hinders bed management. Therefore, predicting a patient’s hospitalization period may support the making of judicious decisions regarding bed management.ObjectiveFirst, this study aims to develop a machine learning (ML)–based predictive model for predicting the discharge probability of inpatients with cardiovascular diseases (CVDs). Second, we aim to assess the outcome of the predictive model and explain the primary risk factors of inpatients for patient-specific care. Finally, we aim to evaluate whether our ML-based predictive model helps manage bed scheduling efficiently and detects long-term inpatients in advance to improve the use of hospital processes and enhance the quality of medical services.MethodsWe set up the cohort criteria and extracted the data from CardioNet, a manually curated database that specializes in CVDs. We processed the data to create a suitable data set by reindexing the date-index, integrating the present features with past features from the previous 3 years, and imputing missing values. Subsequently, we trained the ML-based predictive models and evaluated them to find an elaborate model. Finally, we predicted the discharge probability within 3 days and explained the outcomes of the model by identifying, quantifying, and visualizing its features.ResultsWe experimented with 5 ML-based models using 5 cross-validations. Extreme gradient boosting, which was selected as the final model, accomplished an average area under the receiver operating characteristic curve score that was 0.865 higher than that of the other models (ie, logistic regression, random forest, support vector machine, and multilayer perceptron). Furthermore, we performed feature reduction, represented the feature importance, and assessed prediction outcomes. One of the outcomes, the individual explainer, provides a discharge score during hospitalization and a daily feature influence score to the medical team and patients. Finally, we visualized simulated bed management to use the outcomes.ConclusionsIn this study, we propose an individual explainer based on an ML-based predictive model, which provides the discharge probability and relative contributions of individual features. Our model can assist medical teams and patients in identifying individual and common risk factors in CVDs and can support hospital administrators in improving the management of hospital beds and other resources.

Highlights

  • BackgroundThe use of human and physical resources, which are both costly and scarce, is essential for the efficient operation of hospital processes

  • Extreme gradient boosting, which was selected as the final model, accomplished an average area under the receiver operating characteristic curve score that was 0.865 higher than that of the other models

  • In this study, we propose an individual explainer based on an machine learning (ML)-based predictive model, which provides the discharge probability and relative contributions of individual features

Read more

Summary

Introduction

BackgroundThe use of human and physical resources, which are both costly and scarce, is essential for the efficient operation of hospital processes. Hospitals are required to manage different kinds of resources, such as managing the schedules of the medical team and staff, bed management , and clinical pathways to improve overall management efficiency [1]. A stay in the hospital longer than the optimal treatment time hinders effective bed management. Effective resource management in hospitals can improve the quality of medical services by reducing labor-intensive burdens on staff, decreasing inpatient waiting time, and securing the optimal treatment time. The use of hospital processes requires effective bed management; a stay in the hospital that is longer than the optimal treatment time hinders bed management. Predicting a patient’s hospitalization period may support the making of judicious decisions regarding bed management

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.