Abstract

Nontarget high-resolution mass spectrometry screening (NTS HRMS/MS) can detect thousands of organic substances in environmental samples. However, new strategies are needed to focus time-intensive identification efforts on features with the highest potential to cause adverse effects instead of the most abundant ones. To address this challenge, we developed MLinvitroTox, a machine learning framework that uses molecular fingerprints derived from fragmentation spectra (MS2) for a rapid classification of thousands of unidentified HRMS/MS features as toxic/nontoxic based on nearly 400 target-specific and over 100 cytotoxic endpoints from ToxCast/Tox21. Model development results demonstrated that using customized molecular fingerprints and models, over a quarter of toxic endpoints and the majority of the associated mechanistic targets could be accurately predicted with sensitivities exceeding 0.95. Notably, SIRIUS molecular fingerprints and xboost (Extreme Gradient Boosting) models with SMOTE (Synthetic Minority Oversampling Technique) for handling data imbalance were a universally successful and robust modeling configuration. Validation of MLinvitroTox on MassBank spectra showed that toxicity could be predicted from molecular fingerprints derived from MS2 with an average balanced accuracy of 0.75. By applying MLinvitroTox to environmental HRMS/MS data, we confirmed the experimental results obtained with target analysis and narrowed the analytical focus from tens of thousands of detected signals to 783 features linked to potential toxicity, including 109 spectral matches and 30 compounds with confirmed toxic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.