Abstract

In the evolving field of human-computer interaction (HCI), gesture recognition has emerged as a critical focus, with smart gloves equipped with sensors playing one of the most important roles. Despite the significance of dynamic gesture recognition, most research on data gloves has concentrated on static gestures, with only a small percentage addressing dynamic gestures or both. This study explores the development of a low-cost smart glove prototype designed to capture and classify dynamic hand gestures for game control and presents a prototype of data gloves equipped with five flex sensors, five force sensors, and one inertial measurement unit (IMU) sensor. To classify dynamic gestures, we developed a neural network-based classifier, utilizing a convolutional neural network (CNN) with three two-dimensional convolutional layers and rectified linear unit (ReLU) activation where its accuracy was 90%. The developed glove effectively captures dynamic gestures for game control, achieving high classification accuracy, precision, and recall, as evidenced by the confusion matrix and training metrics. Despite limitations in the number of gestures and participants, the solution offers a cost-effective and accurate approach to gesture recognition, with potential applications in VR/AR environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.