Abstract
Measurements and fault data from an older software version were used to build the fault prediction model for the new release. When past fault data isn't available, it's a problem. The software industry's assessment of programme module failure rates without fault labels is a difficult task. Unsupervised learning can be used to build a software fault prediction model when module defect labels are not available. These techniques can help identify programme modules that are more prone to errors. One method is to make use of clustering algorithms. Software module failures can be predicted using unsupervised techniques such as clustering when fault labels are not available. Machine learning clustering-based software failure prediction is our approach to solving this complex problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Global Journal of Innovation and Emerging Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.