Abstract
ABSTRACT With rapid population growth and the high influence of climate change on agricultural productivity, providing enough food is the main challenge in the 21st century. Irrigation, as a hydrological artificial process, has an indispensable role in achieving that goal. However, high pressure and demand on water resources could lead to serious problems in water consumption. Knowing information about the spatial distribution of irrigation parcels is essential to many aspects of Earth system science and global change research. To extract this knowledge for the main agricultural region in Serbia located in the moderate continental area, we utilized optical satellite Sentinel-2 data and collected ground truth data needed to train the machine learning model. Both satellite imagery and ground truth data were collected for the three most irrigated crops, maize, soybean, and sugar beet during 3 years (2020–2022) characterized by different weather conditions. This data was then used for training the Random Forest-based models, separately for each crop type, differentiating irrigated and rainfed crops on the parcel level. Finally, the models were run for the whole territory of Vojvodina generating 10 m resolution maps of irrigated three crops of interest. With overall accuracy for crops per year (2020: 0.76; 2021: 0.78; 2022: 0.84) results showed that this method could be successfully used for detecting the irrigation of three crops of interest. This was confirmed by validation with the national dataset from Public Water Management Company “Vode Vojvodine” which revealed that classification maps had an accuracy of 76%. These maps further allow us to understand the spatial dynamics of the most important irrigated crops and can serve for the improvement of sustainable agricultural water management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.