Abstract
Surface electromyography (EMG) allows reliable detection of muscle activity in all nine intrinsic and extrinsic ear muscles during facial muscle movements. The ear muscles are affected by synkinetic EMG activity in patients with postparalytic facial synkinesis (PFS). The aim of the present work was to establish a machine-learning-based algorithm to detect eyelid closure and smiling in patients with PFS by recording sEMG using surface electromyography of the auricular muscles. Sixteen patients (10 female, 6 male) with PFS were included. EMG acquisition of the anterior auricular muscle, superior auricular muscle, posterior auricular muscle, tragicus muscle, orbicularis oculi muscle, and orbicularis oris muscle was performed on both sides of the face during standardized eye closure and smiling tasks. Machine-learning EMG classification with a support vector machine allowed for the reliable detection of eye closure or smiling from the ear muscle recordings with clear distinction to other mimic expressions. These results show that the EMG of the auricular muscles in patients with PFS may contain enough information to detect facial expressions to trigger a future implant in a closed-loop system for electrostimulation to improve insufficient eye closure and smiling in patients with PFS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.