Abstract

The massive modern technical revolution in electronics, cognitive computing, and sensing has provided critical infrastructure for the development of today’s Internet of Things (IoT) for a wide range of applications. However, because endpoint devices’ computing, storage, and communication capabilities are limited, IoT infrastructures are exposed to a wide range of cyber-attacks. As such, Darknet or blackholes (sinkholes) attacks are significant, and recent attack vectors that are launched against several IoT communication services. Since Darknet address space evolved as a reserved internet address space that is not contemplated to be used by legitimate hosts globally, any communication traffic is speculated to be unsolicited and distinctively deemed a probe, backscatter, or misconfiguration. Thus, in this paper, we develop, investigate, and evaluate the performance of machine-learning-based Darknet traffic detection systems (DTDS) in IoT networks. Mainly, we make use of six supervised machine-learning techniques, including bagging decision tree ensembles (BAG-DT), AdaBoost decision tree ensembles (ADA-DT), RUSBoosted decision tree ensembles (RUS-DT), optimizable decision tree (O-DT), optimizable k-nearest neighbor (O-KNN), and optimizable discriminant (O-DSC). We evaluate the implemented DTDS models on a recent and comprehensive dataset, known as the CIC-Darknet-2020 dataset, composed of contemporary actual IoT communication traffic involving four different classes that combine VPN and Tor traffic in a single dataset covering a wide range of captured cyber-attacks and hidden services provided by the Darknet. Our empirical performance analysis demonstrates that bagging ensemble techniques (BAG-DT) offer better accuracy and lower error rates than other implemented supervised learning techniques, scoring a 99.50% of classification accuracy with a low inferencing overhead of 9.09 µ second. Finally, we also contrast our BAG-DT-DTDS with other existing DTDS models and demonstrate that our best results are improved by (1.9~27%) over the former state-of-the-art models.

Highlights

  • Internet of Things (IoT) and other communication technologies have dramatically improved our ability to comprehend our environment

  • The results show that the suggested approaches detect and categorize Darknet traffic with an accuracy of 89% for categorization and 96% for detection

  • Since Darknet address space evolved as a reserved internet address space that is not contemplated to be used by legitimate hosts globally, any communication traffic is speculated to be unsolicited and distinctively deemed a probe, backscatter, or misconfiguration

Read more

Summary

Introduction

IoT and other communication technologies have dramatically improved our ability to comprehend our environment. Life quality may be improved through the use of IoT technologies, which have the potential to gather and analyze data about the surrounding environment [1]. This circumstance facilitates the development of smart cities by making it easier for things and humans to communicate with each other. There were an estimated 50 billion Internet of Things (IoT) devices by the end of 2020 [2,3]. The IoT is a sophisticated and interconnected system. It is difficult to meet the security requirements of an IoT system with a large attack surface.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.