Abstract

Greenhouse climate control systems are usually based on greenhouse microclimate settings to exert any control. However, to save energy, water and nutrients, additional parameters related to crop performance and physiology will have to be considered. In addition, detecting crop stress before it is clearly visible by naked eye is an advantage that could aid in microclimate control. In this study, a Machine Learning (ML) model which takes into account microclimate and crop physiological data to detect different types of crop stress was developed and tested. For this purpose, a multi-sensor platform was used to record tomato plant physiological characteristics under different fertigation and air temperature conditions. The innovation of the current model lies in the integration of photosynthesis rate (Ps) values estimated by means of remote sensing using a photochemical reflectance index (PRI). Through this process, the time-series Ps data were combined with crop leaf temperature and microclimate data by means of the ML model. Two different algorithms were evaluated: Gradient Boosting (GB) and MultiLayer perceptron (MLP). Two runs with different structures took place for each algorithm. In RUN 1, there were more feature inputs than the outputs to build a model with high predictive accuracy. However, in order to simplify the process and develop a user-friendly approach, a second, different run was carried out. Thus, in RUN 2, the inputs were fewer than the outputs, and that is why the performance of the model in this case was lower than in the case of RUN 1. Particularly, MLP showed 91% and 83% accuracy in the training sample, and 89% and 82% in testing sample, for RUNs 1 and 2, respectively. GB showed 100% accuracy in the training sample for both runs, and 91% and 83% in testing sample in RUN 1 and RUN 2, respectively. To improve the accuracy of RUN 2, a larger database is required. Both models, however, could easily be incorporated into existing greenhouse climate monitoring and control systems, replacing human experience in detecting greenhouse crop stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.