Abstract

Timely and accurate acquisition of crop distribution and planting area information is important for making agricultural planning and management decisions. This study employed aerial imagery as a data source and machine learning as a classification tool to statically and dynamically identify crops over an agricultural cropping area. Comparative analysis of pixel-based and object-based classifications was performed and classification results were further refined based on three types of object features (layer spectral, geometry, and texture). Static recognition using layer spectral features had the highest accuracy of 75.4% in object-based classification, and dynamic recognition had the highest accuracy of 88.0% in object-based classification based on layer spectral and geometry features. Dynamic identification could not only attenuate the effects of variations on planting dates and plant growth conditions on the results, but also amplify the differences between different features. Object-based classification produced better results than pixel-based classification, and the three feature sets (layer spectral alone, layer spectral and geometry, and all three) resulted in only small differences in accuracy in object-based classification. Dynamic recognition combined with object-based classification using layer spectral and geometry features could effectively improve crop classification accuracy with high resolution aerial imagery. The methodologies and results from this study should provide practical guidance for crop identification and other agricultural mapping applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call