Abstract

Predicting the corrosion rate for soil-buried steel is significant for assessing the service-life performance of structures in soil environments. However, due to the large amount of variables involved, existing corrosion prediction models have limited accuracy for complex soil environment. The present study employs three machine learning (ML) algorithms, i.e., random forest, support vector regression, and multilayer perception, to predict the corrosion current density of soil-buried steel. Steel specimens were embedded in soil samples collected from different regions of the Wisconsin state. Variables including exposure time, moisture content, pH, electrical resistivity, chloride, sulfate content, and mean total organic carbon were measured through laboratory tests and were used as input variables for the model. The current density of steel was measured through polarization technique, and was employed as the output of the model. Of the various ML algorithms, the random forest (RF) model demonstrates the highest predictability (with an RMSE value of 0.01095 A/m2 and an R2 value of 0.987). In light of the feature selection method, the electrical resistivity is identified as the most significant feature. The combination of three features (resistivity, exposure time, and mean total organic carbon) is the optimal scenario for predicting the corrosion current density of soil-buried steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.