Abstract

Shear Horizontal (SH) guided waves have been extensively used to estimate and detect defects in structures like plates and pipes. Depending on the frequency and plate thickness, more than one guided-wave mode propagates, which renders signal interpretation complicated due to mode mixing and complex behavior of each individual mode interacting with defects. This paper investigates the use of machine learning models to analyse the two lowest order SH guided modes, for quantitative size estimation and detection of corrosion-like defects in aluminium plates. The main contribution of the present work is to show that mode separation through machine learning improves the effectiveness of predictive models. Numerical simulations have been performed to generate time series for creating the estimators, while experimental data have been used to validate them. We show that a full mode separation scheme decreased the error rate of the final model by 30% and 67% in defect size estimation and detection respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.