Abstract

BackgroundProstate cancer (PCa) incidence and mortality rates are rising, necessitating precise prognostic tools to guide personalized treatment. Dysregulation of programmed cell death pathways in tumor suppression and cancer development has garnered increasing attention, providing a new research direction for identifying biomarkers and potential therapeutic targets. MethodsIntegrating multiple database resources, we constructed and optimized a prognostic signature based on the expression of programmed cell death-related genes (PCDRG) using ten machine learning algorithms. Model performance and prognostic effects were further evaluated. We analyzed the relationships between signature and clinicopathological features, somatic mutations, drug sensitivity, and the tumor immune microenvironment, and constructed a nomogram. The expression level of PCDRGs were evaluated and compared. ResultsOf 1560 PCDRGs, 149 were differentially expressed in PCa, with 34 associated with biochemical recurrence. The PCDRG-derived index (PCDI), constructed using the random forest algorithm, exhibited optimal prognostic performance, successfully stratifying PCa patients into two groups with significant prognostic differences. Patients with high PCDI scores exhibited poorer survival and lower immunotherapy benefit. PCDI was closely associated with the infiltration of specific immune cells, particularly positive correlations with macrophages and T helper cells, and negative correlations with neutrophils, suggesting that PCDI may influence the tumor immune microenvironment, thereby affecting patient prognosis and treatment response. PCDI was associated with age, pathological stage, somatic mutations, and drug sensitivity. The PCDI-based nomogram demonstrated excellent performance in predicting biochemical recurrence in PCa patients. Finally, the differential expression of these PCDRGs was verified based on cell lines and PCa patient expression profile data. ConclusionThis study developed an effective prognostic indicator for prostate cancer, PCDI, using machine learning approaches. PCDI reflects the link between aberrant programmed cell death pathways and disease progression and treatment response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.