Abstract
We implemented optimization techniques of machine learning (ML) to obtain the mutually exclusive sets of experimental parameters that maximize the number of strontium atoms of different isotopes (88Sr, 86Sr, and 87Sr) in a magneto-optical trap (MOT). Machine learning optimization techniques are significantly faster than conventional manual optimization. While optimizing the parameters, these algorithms efficiently tackle the problem of being confined in one of the local maxima in the parametric space. Thus, ML can be implemented to automate the loading of different isotopes into MOT to perform multiple experiments in a single setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.