Abstract

AbstractSolvents are widely used in chemical processes. The use of efficient model‐based solvent selection techniques is an option worth considering for rapid identification of candidates with better economic, environment and human health properties. In this paper, an optimization‐based MLAC‐CAMD framework is established for solvent design, where a novel machine learning‐based atom contribution method is developed to predict molecular surface charge density profiles (σ‐profiles). In this method, weighted atom‐centered symmetry functions are associated with atomic σ‐profiles using a high‐dimensional neural network model, successfully leading to a higher prediction accuracy in molecular σ‐profiles and better isomer identifications compared with group contribution methods. The new method is integrated with the computer‐aided molecular design technique by formulating and solving a mixed‐integer nonlinear programming model, where model complexities are managed with a decomposition‐based strategy. Finally, two case studies involving crystallization and reaction are presented to highlight the wide applicability and effectiveness of the MLAC‐CAMD framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.