Abstract

Many elderly people rarely own or use air conditioners because of low income and economising habits, causing them to live in warm thermal environments when heat waves and hot weather occur. Living in warm conditions worsens thermal discomfort and poses health risks this group. To investigate the thermal comfort and adaptation of the elderly, a total of 38 participants were recruited for two parts of experiments in a climate chamber: Part A collected thermal sensation vote (TSV) and physiological parameters for 30 min at 28, 30, and 32 °C, and Part B presented a 20-min cooling with fans (air velocities of 0.6 and 1.4 m/s) at the same temperature. Furthermore, we constructed a thermal comfort model for the elderly based on human body exergy analysis and the GBDT, AdaBoost, and XGBoost machine-learning algorithms. The results showed that the predicted mean vote considerably overestimated the actual TSV. The TSV and mean skin temperature were decreased by 0.1–0.5 scores and 0.4–0.5 °C by the behavioural adaptation of fan cooling. The predictive results showed that the XGBoost model performed better, with R2 score, mean absolute error (MAE), and mean squared error (MSE) of 81 %, 0.10, and 0.01. Exergy transfer from evaporation (Ex-Esk), mean skin temperature (mtsk), air velocity (va), and convective exergy transfer (Ex-C) contributed more to the feature importance in the SHAP value analysis. The current study has implications for investigating physiological comfort and age-friendly environmental designs for the elderly, providing new perspectives for thermal comfort evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.