Abstract
BackgroundWithin modern health systems, the possibility of accessing a large amount and a variety of data related to patients' health has increased significantly over the years. The source of this data could be mobile and wearable electronic systems used in everyday life, and specialized medical devices. In this study we aim to investigate the use of modern Machine Learning (ML) techniques for preclinical health assessment based on data collected from questionnaires filled out by patients. MethodTo identify the health conditions of pregnant women, we developed a questionnaire that was distributed in three maternity hospitals in the Mureș County, Romania. In this work we proposed and developed an ML model for pattern detection in common risk assessment based on data extracted from questionnaires. ResultsOut of the 1278 women who answered the questionnaire, 381 smoked before pregnancy and only 216 quit smoking during the period in which they became pregnant. The performance of the model indicates the feasibility of the solution, with an accuracy of 98 % confirmed for the considered case study. ConclusionThe proposed solution offers a simple and efficient way to digitize questionnaire data and to analyze the data through a reduced computational effort, both in terms of memory and computing power used.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.