Abstract

Rockfall is one of the most hazardous phenomena in mountainous and hilly regions with high and steep terrain. Such incidents can cause massive damage to people, properties, and infrastructure. Therefore, proper rockfall hazard assessment methods are required to save lives and provide a guide for the development of an area. The aim of this research is to develop a method for rockfall hazard assessment at two different scales (regional and local). A high-resolution airborne laser scanning (ALS) technique was utilized to derive an accurate digital terrain model (DTM); next, a terrestrial laser scanner (TLS) was used to capture the topography of the two most critical areas within the study area. A staking machine-learning model based on different classifiers, namely logistic regression (LR), random forest (RF), artificial neural network (ANN), support vector machine (SVM), and k-nearest neighbor (KNN), was optimized and employed to determine rockfall probability by utilizing various rockfall conditioning factors. A developed 3D rockfall kinematic model was used to obtain rockfall trajectories, velocity, frequency, bouncing height, kinetic energy, and impact location. Next, a spatial model combined with a fuzzy analytical hierarchy process (fuzzy-AHP) integrated in the Geographic Information System (GIS) was developed to assess rockfall hazard in two different areas in Ipoh, Malaysia. Additionally, mitigation processes were suggested and assessed to provide a comprehensive information for urban planning management. The results show that, the stacking random forest–k-nearest neighbor (RF-KNN) model is the best hybrid model compared to other tested models with an accuracy of 89%, 86%, and 87% based on training, validation, and cross-validation datasets, respectively. The three-dimension rockfall kinematic model was calibrated with an accuracy of 93% and 95% for the two study areas and subsequently the rockfall trajectories and their characteristics were derived. The assessment of the suggested mitigation processes proves that the proposed methods can reduce or eliminate rockfall hazard in these areas. According to the results, the proposed method can be generalized and applied in other geographical places to provide decision-makers with a comprehensive rockfall hazard assessment.

Highlights

  • Rockfall is a type of landslide that can be defined as blocks detaching from a cliff face and heading rapidly downslope with different motion modes encompassing flying/falling, bouncing, rolling, and sliding [1,2]

  • The results show that, the stacking random forest–k-nearest neighbor (RF-KNN) model is the best hybrid model compared to other tested models with an accuracy of 89%, 86%, and 87% based on training, validation, and cross-validation datasets, respectively

  • The main datasets used in rockfall hazard assessment are rockfall inventory, Light Detection and Ranging (LiDAR), and Geographic Information System (GIS) layers

Read more

Summary

Introduction

Rockfall is a type of landslide that can be defined as blocks detaching from a cliff face and heading rapidly downslope with different motion modes encompassing flying/falling, bouncing, rolling, and sliding [1,2] These blocks vary in size ranging from decimeters (boulder fragments) to meters (big rocks) [3]. Light Detection and Ranging (LiDAR) techniques, both terrestrial laser scanner (TLS) and airborne laser scanner (ALS), have been increasingly employed in geo-hazard studies to create an accurate DTM [5,6,7] This is because of its ability to produce high-resolution data in both horizontal and vertical directions. The topography of a slope can be represented by either a 3D terrain or a 2D profile [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.