Abstract
Chronic total occlusion (CTO) is a form of coronary artery disease (CAD) requiring percutaneous coronary intervention. There has been minimal research regarding CTO-specific risk factors and predictive models. We developed machine learning predictive models based on clinical characteristics to identify patients with CTO before coronary angiography. Data from 1473 patients with CAD, including 317 patients with and 1156 patients without CTO, were retrospectively analyzed. Partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machine (SVM) models were used to identify CTO-specific risk factors and predict CTO development. Receiver operating characteristic (ROC) curve analysis was performed for model validation. For CTO prediction, the PLS-DA model included 10 variables; the ROC value was 0.706. The RF model included 42 variables; the ROC value was 0.702. The SVM model included 20 variables; the ROC value was 0.696. DeLong's test showed no difference among the three models. Four variables were present in all models: sex, neutrophil percentage, creatinine, and brain natriuretic peptide (BNP). Validation of machine learning prediction models for CTO revealed that the PLS-DA model had the best prediction performance. Sex, neutrophil percentage, creatinine, and BNP may be important risk factors for CTO development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.