Abstract

In recent years, machine learning (ML) techniques have been used in various fields of engineering practice. In order to evaluate the feasibility of machine learning algorithms for prediction of wind-induced effects on high-rise buildings, four ML algorithms including ridge regression, decision tree, random forest and gradient boosting regression tree are adopted in this study to predict wind pressures on Commonwealth Advisory Aeronautical Research Council standard tall building. The gradient boosting regression tree model is proved to be well performed in predicting both mean wind pressures and fluctuating wind pressures. Compared to expensive wind tunnel tests and time-consuming computational fluid dynamic simulations, it is expected that the gradient boosting regression tree model is an efficient and economical alternative for predicting wind pressures on high-rise buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.