Abstract
Glaucoma is a silent disease characterized by progressive degeneration of retinal ganglion cells and, when not detected or treated early, can lead to blindness. Computer systems have demonstrated their efficiency in the medical decision-making process and Artificial Intelligence (AI) techniques have helped advances in ophthalmology, allowing for faster and more effective detection of glaucoma. Machine learning is a very promising subfield of AI that supports research in understanding the development, progression and treatment of glaucoma, identifying new risk factors and assessing the importance of existing ones.This study aims to test and analyze the results of different models of supervised machine learning in the detection and classification of ophthalmic diseases (Glaucoma, high myopia and low myopia) based on data from Corvis ST. The most important characteristics were selected based on a variance greater than 0.02. In terms of accuracy, the models that obtained the best results were Random Forrest 0.73, Stochastic Gradient Descent (SGD) 0.75, Gradient Boosting Classifier (GBC) 0.76 and K-Nearest Neighbors 0.71. The GBC model achieved the best results in accuracy, AUC, Recall and F1Score 76.00, 52.5, 78.00, 70.2 respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.