Abstract
Rapid analysis of components in complex matrices has always been a major challenge in constructing sensing methods, especially concerning time and cost. The detection of pesticide residues is an important task in food safety monitoring, which needs efficient methods. Here, we constructed a machine learning-assisted synchronous fluorescence sensing approach for the rapid and simultaneous quantitative detection of two important benzimidazole pesticides, thiabendazole (TBZ) and fuberidazole (FBZ), in red wine. First, fluorescence spectra data were collected using a second derivative constant-energy synchronous fluorescence sensor. Next, we established a prediction model through the machine learning approach. With this approach, the recovery rate of TBZ and FBZ detection of pesticide residues in red wine was 101% ± 5% and 101% ± 15%, respectively, without resorting complicated pretreatment procedures. This work provides a new way for the combination of machine learning and fluorescence techniques to solve the complexity in multi-component analysis in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.