Abstract

Early and accurate diagnosis of cystic echinococcosis (CE) with existing technologies is still challenging. Herein, we proposed a novel strategy based on the combination of label-free serum surface-enhanced Raman scattering (SERS) spectroscopy and machine learning for rapid and non-invasive diagnosis of early-stage CE. Specifically, by establishing early- and middle-stage mouse models, the corresponding CE-infected and normal control serum samples were collected, and silver nanoparticles (AgNPs) were utilized as the substrate to obtain SERS spectra. The early- and middle-stage discriminant models were developed using a support vector machine, with diagnostic accuracies of 91.7% and 95.7%, respectively. Furthermore, by analyzing the serum SERS spectra, some biomarkers that may be related to early CE were found, including purine metabolites and protein-related amide bands, which was consistent with other biochemical studies. Thus, our findings indicate that label-free serum SERS analysis is a potential early-stage CE detection method that is promising for clinical translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.