Abstract
This study presents the combination of Raman spectroscopy with machine learning algorithms as a prospective diagnostic tool capable of detecting and monitoring relevant variations of pH and lactate as recognized biomarkers of several pathologies. The applicability of the method proposed here is tested both in vitro and ex vivo. In a first step, Raman spectra of aqueous solutions are evaluated for the identification of characteristic patterns resulting from changes in pH or in the concentration of lactate. The method is further validated with blood and plasma samples. Principal component analysis is used to highlight the relevant features that differentiate the Raman spectra regarding their pH and concentration of lactate. Partial least squares regression models are developed to capture and model the spectral variability of the Raman spectra. The performance of these predictive regression models is demonstrated by clinically accurate predictions of pH and lactate from unknown samples in the physiologically relevant range. These results prove the potential of our method to develop a noninvasive technology, based on Raman spectroscopy, for continuous monitoring of pH and lactate in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.