Abstract

Biochar production via pyrolysis of various organic waste has potential to reduce dependence on conventional energy sources and mitigate global warming potential. Existing models for predicting biochar yield and compositions are computationally-demanding, complex, and have low accuracy for extrapolative scenarios. Here, two data-driven machine learning models based on Multi-Layer Perceptron Neural Network and Artificial Neuro-Fuzzy Inference System are developed. The data-driven models predict biochar yield and compositions for a variety of input feedstock compositions and pyrolysis process conditions. Feature importance assessment of the input dataset revealed their competitive significance for predicting biochar yield and compositions. Overall, the predictive accuracy of the models was up to 12.7% better than the Random Forest and eXtreme Gradient Boosting machine learning algorithms reported in the literature. The models developed are valuable for environmental footprint assessment of biochar production and rapid system optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.