Abstract

Array-based sensing methods offer significant advantages in the simultaneous detection of multiple amyloid biomarkers and thus have great potential for diagnosing early-stage Alzheimer's disease. Yet, detecting low concentrations of amyloids remains exceptionally challenging. Here, we have developed a fluorescent sensor array based on the dual coupling of a nanoenzyme (AuNPs) and bioenzyme (horseradish peroxidase) to detect amyloids. Various ss-DNAs were bound to the nanoenzyme for regulating enzymatic activity and recognizing amyloids. A simplified sensor array was generated from a screening model via machine learning algorithms and achieved signal amplification through a two-step enzymatic reaction. As a result, our sensing system could discriminate the aggregation species and aggregation kinetics at 200 nM with 100% accuracy. Moreover, AD model mice and healthy mice were distinguished with 100% accuracy through the sensor array, providing a powerful sensing platform for diagnosing AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.