Abstract

Several strategies have been recently proposed in order to improve Monte Carlo sampling efficiency using machine learning tools. Here, we challenge these methods by considering a class of problems that are known to be exponentially hard to sample using conventional local Monte Carlo at low enough temperatures. In particular, we study the antiferromagnetic Potts model on a random graph, which reduces to the coloring of random graphs at zero temperature. We test several machine-learning-assisted Monte Carlo approaches, and we find that they all fail. Our work thus provides good benchmarks for future proposals for smart sampling algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.