Abstract

Elemental fingerprint coupled with machine learning modelling was proposed for species authentication of the edible animal blood gel (EABG). A total of 25 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) in 150 EABG samples prepared from five species of animals, namely duck, chicken, bovine, pig, and sheep. Extreme learning machine (ELM) models were constructed and optimized. Principal component analysis and Fisher linear discriminant analysis were comparatively utilized for dimension reduction of the crucial input elements selected via stepwise discriminant analysis and one-way ANOVA. The optimal ELM model was obtained with the crucial elements selected by one-way ANOVA from the relative content of the measured elements, which afforded accuracies of 98.0% and 96.0% for the training and test set, respectively. All findings suggest that elemental fingerprint accompanied by ELM have great potential in authenticating the edible animal blood food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.