Abstract
Additive manufacturing techniques can introduce defects that worsen the mechanical properties of 3D printed parts. Current techniques for quantifying the detrimental effects of these defects can only provide detailed analysis for a small number of geometries. Here, we investigate the effect of each defect feature (surface roughness and void position, number density and size) on the mechanical properties of a large number of truss lattices belonging to the stretch-dominated and bending-dominated topology. This is done by reducing each truss lattice into a single-beam sub-unit cell and conducting finite element simulations on it. The generated data is subjected to machine learning algorithms to identify the most important defect and design features that determine the mechanical properties of the overall structure. Our results indicate that surface roughness, Rmax (i.e. peak-to-trough height), exceeding 10% of the beam diameter strongly reduces the specific modulus and strength of lattice structures, especially for bending-dominated geometries. Interior voids, on the other hand, adversely affect stretch-dominated geometries but improve the specific properties of bending-dominated structures by removing under-stressed material in the core of the beams and causing them to become more “tube-like”. These insights are supported by first-principles analytical modeling and experimental data of additively manufactured metal lattices in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.