Abstract

Machine-learning assisted handwriting recognition is crucial for development of next-generation biometric technologies. However, most of the currently reported handwriting recognition systems are lacking in flexible sensing and machine learning capabilities, both of which are essential for implementation of intelligent systems. Herein, assisted by machine learning, we develop a new handwriting recognition system, which can be applied as both a recognizer for written texts and an encryptor for confidential information. This flexible and intelligent handwriting recognition system combines a printed circuit board with graphene oxide-based hydrogel sensors. It offers fast response and good sensitivity and allows high-precision recognition of handwritten content from a single letter to words and signatures. By analyzing 690 acquired handwritten signatures obtained from seven participants, we successfully demonstrate a fast recognition time (less than 1 s) and a high recognition rate (∼91.30%). Our developed handwriting recognition system has great potential in advanced human-machine interactions, wearable communication devices, soft robotics manipulators, and augmented virtual reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.