Abstract

The simultaneous detection of multiple residues of pyrethroid pesticides (PPs) on vegetables and fruits is still challenging using traditional nanosensing methods due to the high structural similarity of PPs. In this work, sensor arrays composed of three nanocomposite complexes (rhodamine B-CD@Au, rhodamine 6G-CD@Au, and coumarin 6-CD@Au) were constructed to discriminate between structurally similar PPs. Four PPs, deltamethrin, fenvalerate, cyfluthrin, and fenpropathrin, were successfully discriminated. The ability of these sensor units was derived from the different affinity between receptor/analyte and receptor/dye, as well as the non-linear relationship between fluorescence signal and analyte concentration. Upon multivariate pattern recognition analysis, the array performed high-throughput identification of four PPs in unknown samples with 100% classification accuracy. In addition, good accuracy of predicting concentration using the “stepwise prediction” strategy combined with the machine learning method was achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call