Abstract

Oxygen reduction reaction and oxygen evolution reaction are pivotal in energy conversion. Herein, we systematically studied the catalytic performance of Pt-doped dual transition metal (DTM) Janus-MXenes as single-atom catalysts (SACs) using first-principles calculations and established machine learning (ML) models to explore the physical and chemical properties affecting the catalytic overpotential. Specifically, the stability of Janus-MXenes was first explored through cohesive energies, phonon dispersion and ab initio molecular dynamics simulations. The electronic properties of Pt-doped Janus-MXenes were investigated next. Some excellent catalysts, including Pt-VO-MnTiCO2 (ηORR/OER = 0.24/0.38 V) and Pt-VO-PdTiCO2 (ηORR/OER = 0.33/0.36 V), were found because of their ultralow overpotential. It’s attributed to the tuning of the electronic properties of SACs by DTM. Importantly, ML models were used to reveal the importance of descriptors affecting overpotential, thereby uncovering the origin of the catalytic activity of SACs. Our work significantly reduces the research costs of SACs and serves as a guide for designing high-performance catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.