Abstract

<h2>Summary</h2> The development of color-tunable fluorescent materials with simple chemical compositions that are easy to synthesize is highly desirable but practically challenging. Here, we report a versatile yet simple platform based on through-space charge transfer (TSCT) polymers that has full-color-tunable emission and was developed with the aid of predictive machine learning models. Using a single-acceptor fluorophore as the initiator for atom transfer radical polymerization, a series of electron donor groups containing simple polycyclic aromatic moieties (e.g., pyrene) are introduced either by one-step copolymerization or by end-group functionalization of a pre-synthesized polymer. By manipulating donor-acceptor interactions via controlled polymer synthesis, continuous blue-to-red emission color tuning was easily achieved in solid polymers. Theoretical investigations confirm the structurally dependent TSCT-induced emission redshifts. We also exemplify how these TSCT polymers can be used as a general design platform for solid-state stimuli-responsive materials with high-contrast photochromic emission by applying them to proof-of-concept information encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.