Abstract

Additive manufacturing has enabled the fabrication of advanced reactor geometries, permitting larger, more complex design spaces. Identifying promising configurations within such spaces presents a significant challenge for current approaches. Furthermore, existing parameterizations of reactor geometries are low dimensional with expensive optimization, limiting more complex solutions. To address this challenge, we have established a machine learning-assisted approach for the design of new chemical reactors, combining the application of high-dimensional parameterizations, computational fluid dynamics and multi-fidelity Bayesian optimization. We associate the development of mixing-enhancing vortical flow structures in coiled reactors with performance and used our approach to identify the key characteristics of optimal designs. By appealing to the principles of fluid dynamics, we rationalized the selection of design features that lead to experimental plug flow performance improvements of ~60% compared with conventional designs. Our results demonstrate that coupling advanced manufacturing techniques with ‘augmented intelligence’ approaches can give rise to reactor designs with enhanced performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.