Abstract

• The most 6 critical parameters of deciding ductility of X 2 YZ alloys were determined. • Element X in most of alloys with superior ductility was found to have FCC structure. • A formula k = m EWF m + nG m + k 0 that can effectively predict ductility was constructed. • An approach combining ML and analyses to reveal mechanism was exemplified. Brittleness is a critical issue hindering the potential application of the X 2 YZ-type full Heusler alloys in several fields of state-of-the-art technologies. To realize optimization of brittleness or design a ductile Heuser alloy, it is greatly urgent to identify the key materials factors deciding brittleness and establish an empirical rule to effectively evaluate ductility. For this purpose, by using a machine learning and human analysis cooperation approach, the brittleness of the X 2 YZ-type Heusler alloys was systematically studied. Results showed that the ductility is majorly decided by 6 key materials factors in the studied alloys. Using these 6 factors, a machine learning model to predict the Pugh's ratio k was constructed. Further analyses showed that the crystal structure of the X component could be the most critical factor deciding the ductility. The X component has the face-centered cubic (FCC) structure for most of the alloys with superior ductility. To effectively estimate ductility and guide materials design, an empirical formula of k = m EWF m + nG m + k 0 was established based on the known information of electron work function (EWF) and shear modulus ( G ) of the X, Y, and Z elements where the subscript m represents the weight-average value. The coefficients of m (negative) and n (positive) were confirmed to have opposite signs, which can be explained based on the relations between the ductility and the deformation/fracture resistance. This work is expected to deepen the understanding in ductility and promote the design of advanced ductile Heusler alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call