Abstract

A Machine Learning (ML) integrated workflow was utilized to guide the design of Cr, Al-containing five-element high-entropy alloys (HEAs) for achieving an enhanced high-temperature oxidation resistance. ML directs the design of HEAs to a chemical composition consisting of Fe, Cr, Al, Ni, and Cu for enhanced oxidation resistance. The oxidation behavior of AlxCrCuFeNi (x = 0, 0.25, 0.5, 1) HEAs at 1100 °C in air was systematically investigated and the oxidation mechanism was elucidated. The experimental validation agrees well with the ML prediction, demonstrating that ML could be used as a powerful tool for designing alloys with optimized oxidation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.