Abstract

High-strength 2xxx series aluminum alloys (Al-Cu system) have been favored by the aerospace and railway transportation industries. Traditionally, developing new materials with targeted properties is guided by extensive experiments and expert experience, causing the development process to be dismayingly slow and expensive. Here, a Kriging model-based efficient global optimization(EGO) lgorithm is applied to search for new 2xxx series aluminum alloys with high tensile strength in a huge search space. After four iterations, the alloy’s ultimate tensile strength increased by 60 MPa, which is higher than that of the best alloy in the initial data set. This study demonstrates the feasibility of using machine-learning to search for 2xxx alloys with good mechanical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.