Abstract

The fluorescent properties of conjugated microporous polyphenylene (CMPs) were tuned through a wide range by inclusion of small amount of comonomer as chromophore in the network. The multi-color CMPs were used for explosives sensing and demonstrated broad sensitivity (ranging from −0.01888 μM−1 to −0.00467 μM−1) and LODs (ranging from 31.0 nM to 125.3 nM) against thirteen explosive compounds including nitroaromatics (NACs), nitramines (NAMs) and nitrogen-rich heterocycles (NRHCs). The CMPs were also developed as a sensor array for discrimination of thirteen explosives, specifically including NT, p-DNB, DNT, TNT, TNP, TNR, RDX, HMX, CL-20, FOX-7, NTO, DABT and DHT. By using classical statistical method “Linear Discriminant Analysis (LDA)”, the thirteen explosives at a fixed concentration were completely discriminated and unknown test samples were indentied with 88% classification accuracy. Moreover, explosives in different concentrations and the mixtures of explosives were also successfully classified. Compared with LDA, Machine Learning algorithms have significant advantages in analyzing the array-based sensing data. Different Machine Learning models for pattern recognition have also been implemented and discussed here and much higher accuracy (96% for “neural network”) can be achieved in predicting unknown test samples after training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.