Abstract

AbstractA continuous supply of electricity is necessary to maintain an acceptable standard of life, and the power distribution system's overhead line components play a crucial role in this matter. In Pakistan, identifying defective parts often necessitates human involvement. An unmanned aerial vehicle was used to gather a collection of 10,343 photos to automate this procedure. Using supervised and unsupervised machine learning methods, a number of automated anomaly detection systems were created. Support vector machine, random forest, VGG16, and ResNet50 were used as supervised machine learning models, and a convolutional auto‐encoder was used as the unsupervised machine learning model. VGG16 achieved the best accuracy of 99.00% while random forest achieved the worst accuracy of 72.49%. The convolutional auto‐encoder was successful in distinguishing between normal and abnormal components. The aforementioned machine learning models can be put on unmanned aerial vehicles to immediately identify defective parts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.