Abstract
Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.