Abstract
Single nucleotide polymorphisms (SNPs) have many advantages as molecular markers since they are ubiquitous and codominant. However, the discovery of true SNPs in polyploid species is difficult. Peanut ( L.) is an allopolyploid, which has a very low rate of true SNP calling. A large set of true and false SNPs identified from the Axiom_ 58k array was leveraged to train machine-learning models to enable identification of true SNPs directly from sequence data to reduce ascertainment bias. These models achieved accuracy rates above 80% using real peanut RNA sequencing (RNA-seq) and whole-genome shotgun (WGS) resequencing data, which is higher than previously reported for polyploids and at least a twofold improvement for peanut. A 48K SNP array, Axiom_2, was designed using this approach resulting in 75% accuracy of calling SNPs from different tetraploid peanut genotypes. Using the method to simulate SNP variation in several polyploids, models achieved >98% accuracy in selecting true SNPs. Additionally, models built with simulated genotypes were able to select true SNPs at >80% accuracy using real peanut data. This work accomplished the objective to create an effective approach for calling highly reliable SNPs from polyploids using machine learning. A novel tool was developed for predicting true SNPs from sequence data, designated as SNP machine learning (SNP-ML), using the described models. The SNP-ML additionally provides functionality to train new models not included in this study for customized use, designated SNP machine learner (SNP-MLer). The SNP-ML is publicly available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.