Abstract

This research proposes a framework for signal processing and information fusion of spatial-temporal multi-sensor data pertaining to understanding patterns of humans physiological changes in an urban environment. The framework includes signal frequency unification, signal pairing, signal filtering, signal quantification, and data labeling. Furthermore, this paper contributes to human-environment interaction research, where a field study to understand the influence of environmental features such as varying sound level, illuminance, field-of-view, or environmental conditions on humans’ perception was proposed. In the study, participants of various demographic backgrounds walked through an urban environment in Zürich, Switzerland while wearing physiological and environmental sensors. Apart from signal processing, four machine learning techniques, classification, fuzzy rule-based inference, feature selection, and clustering, were applied to discover relevant patterns and relationship between the participants’ physiological responses and environmental conditions. The predictive models with high accuracies indicate that the change in the field-of-view corresponds to increased participant arousal. Among all features, the participants’ physiological responses were primarily affected by the change in environmental conditions and field-of-view.

Highlights

  • Understanding influence of the environmental conditions on human perception is complex

  • The environmental features measured in this research include sound level, dust, temperature, humidity, illuminance and the field-of-view since they influence a person’s sense that, in this research, was represented by the physiological state of a person, which was measured through electro-dermal activity (EDA)

  • This research presented a specific methodology to evaluate a complex dataset from an experiment with physiological responses of 30 participants linked to environmental conditions

Read more

Summary

Introduction

Understanding influence of the environmental conditions on human perception is complex. E.g., sound level, temperature, and illuminance affect our senses. We adopted enhanced measurement and analysis techniques to define and measure what influences citizens in dynamic urban environments. The environmental features measured in this research include sound level, dust, temperature, humidity, illuminance and the field-of-view since they influence a person’s sense that, in this research, was represented by the physiological state of a person, which was measured through electro-dermal activity (EDA). With the advent of technology, researchers explore the utility of sensor-based. Researchers have the means to explore how environmental features can affect individuals’ physiological response-based perceptual quality and overall experience [23]. How to capture and define such a perceptual quality is an ongoing research topic in Cognitive Science and Behavioral Science [21,36]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call