Abstract

We study the high temperature transition in pure $SU(3)$ gauge theory and in full QCD with 3D-convolutional neural networks trained as parts of either unsupervised or semi-supervised learning problems. Pure gauge configurations are obtained with the MILC public code and full QCD are from simulations of $N_f=2+1+1$ Wilson fermions at maximal twist. We discuss the capability of different approaches to identify different phases using as input the configurations of Polyakov loops. To better expose fluctuations, a standardized version of Polyakov loops is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.