Abstract

AbstractThe WR stellar population can be distinguished, at least partially, from other stellar populations by broad-band IR colour selection. We present the use of a machine learning classifier to quantitatively improve the selection of Galactic Wolf-Rayet (WR) candidates. These methods are used to separate the other stellar populations which have similar IR colours. We show the results of the classifications obtained by using the 2MASS J, H and K photometric bands, and the Spitzer/IRAC bands at 3.6, 4.5, 5.8 and 8.0μm. The k-Nearest Neighbour method has been used to select Galactic WR candidates for observational follow-up. A few candidates have been spectroscopically observed. Preliminary observations suggest that a detection rate of 50% can easily be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.