Abstract
Inefficient controlling strategies in heating and cooling systems have given rise to a large amount of energy waste and to widespread complaints about the thermal environment in buildings. An intelligent control method based on a support vector machine (SVM) classifier is proposed in this paper. Skin temperatures are the only inputs to the model and have shown attractive prediction power in recognizing steady state thermal demands. Data were accumulated from two studies to consider potential use for either individuals or a group of occupants. Using a single skin temperature correctly predicts 80% of thermal demands. Using combined skin temperatures from different body segments can improve the model to over 90% accuracy. Results show that three skin locations contained enough information for classification and more would cause the curse of dimensionality. Models using different skin temperatures were compared. Optimal parameters for each model were provided using grid search technique. Considering the overfitting possibility and the cases without learning processes, SVM classifiers with a linear kernel are preferred over Gaussian kernel ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.