Abstract

This paper deals with the problem of monitoring of induction motors (IM) through the development of fault detection and diagnosis (FDD) approach. The developed FDD technique is addressed such that, the principal component analysis (PCA) technique is used for features extraction purposes and the machine learning (ML) classifiers are applied for fault diagnosis. In the proposed FDD approach the most efficient features are extracted and selected through PCA scheme using induction motor data. Besides, their statistical characteristics (mean and variance) are also included. The ML classifiers are applied using the extracted and selected features to perform the FDD problem. The obtained results indicate that the proposed techniques have a wide application area, fast fault detection and diagnosis, making them more reliable for induction motors monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.