Abstract

Machine learning algorithms were used for feature selection and model generation of customized docking score functions for known inhibitors of Mycobacterium tuberculosis enoyl acyl carrier protein reductase. The features included small molecule descriptors derived from MOE, Accord, and Molegro as well as in silico docking energies/scores from GOLD and Autodock. The resulting models can be used to identify key descriptors for enoyl acyl carrier protein reductase inhibition and are useful for high-throughput screening of novel drug compounds. This paper also evaluates and contrasts several strategies for model generation for quantitative structure-activity relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.