Abstract

The industry's demand for intricate geometries has spurred research into additive manufacturing (AM). Customising material properties, including surface roughness, integrity and porosity reduction, are the key industrial goals. This necessitates a holistic approach integrating AM, laser shock peening (LSP) and non-planar geometry considerations. In this study, machine learning and neural networks offer a novel way to create intricate, abstract models capable of discerning complex process relationships. Our focus is on leveraging the certain range of laser parameters (energy, spot area, overlap) to identify optimal residual stress, average surface roughness, and porosity values. Confirmatory experiments demonstrate close agreement, with an 8% discrepancy between modelled and actual residual stress values. This approach's viability is evident even with limited datasets, provided proper precautions are taken.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call